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ABSTRACT 

Let � be an inverse semigroup with the set of idempotents �. In the current paper, we 

show that the projective module tensor product ℓ���� ��	
��� ℓ���� is ℓ����-module 

amenable when � is amenable. This could be considered as the module version (for 

inverse semigroups) of a result of Johnson (1972) which asserts that for any (discrete) 

amenable locally compact group � (when ℓ���� 
 �, the set of complex numbers), 

the projective tensor product ℓ���� �� ℓ���� � ℓ��� � ��  is amenable. 

  
Keywords: Amenability, module amenability, module derivation, semigroup 
algebras. 

 

 

INTRODUCTION 

Let � be a discrete group. It is well known that the group algebra 

ℓ���� is amenable if and only if �  is amenable (1972). This fact fails for  

discrete semigroups. In fact, Duncan and Namioka (1988) proved that if the 

subsemigroup � of idempotent elements of inverse semigroup � is infinite, 

then the semigroup algebra ℓ���� is not amenable. Amini (2004) introduced 

the concept of module amenability for a class of Banach algebras and 

showed that under some natural conditions for an inverse semigroup � with 

the set of idempotents �, the semigroup algebra ℓ����  is module amenable 

as a Banach module on ℓ���� if and only if S is amenable. Now, for an 

amenable discrete group �, it follows from the celebrated Johnson’s theorem 

(1972) that the projective tensor product ℓ������ ℓ���� � ℓ��� � �� is 

amenable. This is not true for any discrete semigroup. In this paper, we 

prove that if � is an amenable inverse semigroup with the set of idempotents 

�, then ℓ������ ℓ���� � ℓ��� � �� is module amenable as an ℓ����-

module. As a consequence, we prove that Banach ℓ����-module 

ℓ���� ��	
��� ℓ���� is module amenable. 
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NOTATIONS AND PRELIMINARIES RESULTS 

            Let � be a Banach algebra and � be a Banach �-bimodule. A 

derivation from � into � is a bounded linear map �: � �  � satisfying: 

 

����� 
 ����. � � �. ����     ��, � � ��. 
 

For each � � � the map � !  ��� 
 �. � " �. � for all � � �, is a 

derivation which is called an inner derivation. If � is a Banach �-bimodule, 

so is �#(the dual space of �). A Banach algebra � is called amenable if for 

any �-bimodule �, every derivation �: � � �# is inner. 

 

Let  � and $ be Banach algebras such that � is a Banach $-bimodule with 

compatible actions as follows: 

 

%. ���� 
 �%. ���,    ����. % 
 ���. %�,  ��, � � �, % � $�. 
 

Let � be a Banach �-bimodule and a Banach $-bimodule with the 

following compatible actions: 
 

%. ��. �� 
 �%. ��. �, �. �%. �� 
 ��. %�. �, 

%. ��. �� 
 �%. ��. �    �� � �, � � �, % � $�, 

 

and similar for the right or two-sided actions. Then we say that � is a 

Banach �-$-module. If � is a Banach �-$-module and %. � 
 �. % for all 

� � � and  % � $, then we say that � is a commutative �-$-module. 
 

Let � and $ be as above and � be a Banach �-$-module. A bounded map 

�: � �  � is called a module derivation if  

 

��� & �� 
 ���� & ����, 

����� 
 ����. � � �. ����, 
��%. �� 
 %. ����, ���. %� 
 ����. %,  

 

for all �, � � �  and % � $. If � is a  commutative �-$-module, then each 

� � � define a module derivation as follows: 

 

�!  ��� 
 �. � " �. �      �� � ��, 
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and that is called  inner derivation. A Banach algebra � is called module 

amenable (as an $-module) if for any commutative Banach �-$-module 

module �, each module derivation  �: � � �# is inner; Amini (2004). 

Let � �� � be the projective tensor product of � and � which is a Banach 

�-bimodule and a Banach $-bimodule by the following actions: 

 

%. ����� 
 �%. ����, c . ����� 
 �'����     ��, �, ' � �, % � $�, 
 

and similar for the right actions. Then, the Rieffel’s result (1978) shows that 

 

� ��$ � � �� �� ��/), 

 

where ) is the closed linear span of  

 
*�. % � � " ��%. �: �, � � �, % � $+. 

 

Consider ,: � �� � �  � defined by ,�� � �� 
 �� and extend by 

linearity and continuity. Let also - be the closed ideal of � generated by 

,�)�. Then ) and - are both �-submodules and $-submodules of � �� � 

and �, respectively. So � ��$ � and �/- are both Banach  �-modules 

and $-modules. Specially, �/- is always an �-$-module when � acts on 

�/- canonically.  

 

Define  ,.: �� �� ��/) �  �/- by ,.�� � � � )� 
 �� � - and extend by 

linearity and continuity. Obviously, ,. and its dual conjugate 

,.##: �� ��$ ��## � �� �� ��##/)// � �##/-// are �-module 

homomorphisms and $-module homomorphisms. 

 
The following result is similar to a classical case for module amenable 

Banach algebras which has been proved by Amini (2004). 

 

Proposition 1. If � and 0 are Banach algebras and Banach $-modules with 
compatible actions, and there is a continuous Banach algebra 

homomorphism and module homomorphism from � onto a dense subset of  

0, and  � is module amenable, then so is 0. 
 

Corollary  2.  Let � be Banach $-module. Then module amenability of 

� �� � implies module amenability �/- �� �/-. 
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Proof. The map 

 

1: � �� � �  �/- �� �/- 
defined by  

 

1�� � �� 
 �� � -� � �� � -�   ��, � � ��, 

 

is an epimorphism and $-module homomorphism. Now, we can apply 

Proposition 1. 2 
 

The following definition is given by Amini (2004). 

 

Definition 3.  A bounded net 34567 in � ��$ � is called a module 

approximate diagonal if ,.�456) is a bounded approximate identity of  �/- 

and 

 

lim
6

; 456 . � " �. 456 ;
 0  �� � ��. 

An element => � �� ��$ ��## is called a module virtual diagonal if  
 

,.##(=>�. � 
 � � -//,  =>. � 
 �. =>   �� � ��. 
 

Note that the ideal - in this paper is defined to be the closed ideal of � 

generated by elements of the form ��. %�� " ��%. ��, for all  �, � � � 

and % � $, whereas Amini et al. (2010), considered it as the closed ideal of 

� generated by elements of the form %. �� " ��. %. These two ideals are the 

same for the inverse semigroup algebra ℓ���� with the corresponding 

actions of ℓ����, but the definition Amini et al. (2010), has the advantage 

that - is also a Banach $-submodule of �. However, Proposition 2.4 of 

Amini (2004), remain valid with this new definition of - when � ��$ � is a 

commutative �-$-module as follows: 

 

Theorem 4.  Let � ��$ � be an commutative �-$-module. Then the 

following are equivalent: 
�?�  � is module amenable and  �/- has a bounded approximate identity. 
�??�  � has a  module approximate diagonal. 
�???�  � has a  module virtual diagonal. 
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TENSOR PRODUCT OF SEMIGROUP ALGEBRAS 

In this section, we investigate the module amenability of  

ℓ���� ��	
��� ℓ���� as ℓ����-module, where � is an inverse semigroup with 

the set of idempotents �. A discrete semigroup � is called an inverse 

semigroup if for each @ � � there is a unique element @#such that @@#@ 
 @ 

and @#@@# 
 @#. An element A � � is called an idempotent if AB 
 A# 
 A. 

The set of idempotents of � is denoted by �. 

There is a natural order on � defined by: 

 

A C D E AD 
 A     �A, D � ��. 
 

The set � is a semilattice and Howie (1976) showed that it is also a 

commutative subsemigroup of �. In particular ℓ���� could be regarded as a 

subalgebra of ℓ����, and thereby ℓ���� is a Banach algebra and a Banach 

ℓ����-module when ℓ���� act on ℓ���� by convolution  from right and 

trivially from left, that is: 
 

FG . FH 
 FH , FH . FG 
 FH # FG 
 FHG �@ � �, A � �). 

 

By the above actions, the ideal  - is the closed linear span of 
 

*FHGI " FHI: @, J � �, A � �+. 

 

We consider an equivalence relation on � as follows: 

 

@ K J E FH " FI � -   �@, J � ��. 

 

Since � is a semilattice, for given A, D � �, AD � � and AD C A, D. 

By using the argument in the paragraph before Theorem 2.4 of Amini et al. 

(2010), we can show that �/K is a group. One should note that when � is a 

discrete group, then � 
 �/K. Now, consider the congruence relation L  on 

� where, @ L J if and only if there is an A � � such that @A 
 JA. It is proved 

by Howie (1976) that the quotient semigroup �H: 
 �/L is then a maximal 

group homomorphic image of �. It is also proved that �/K is isomorphic to 

�H by Pourmahmood (2010). For two Banach algebras ℓ���) and  ℓ���H�, 

Rezavand et al. (2009), showed that ℓ����/- � ℓ���H�. With the above 

observation ℓ���H� has an ℓ����-module structure.  
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Henceforth, for each @ � �, the equivalence class of @ in �H 
 �/K 

denotes by M@N. Bodaghi (2010) has proven that if � is amenable and � is an 

upward direct set, then ℓ������ ℓ���� is module amenable. The upward 

directed condition for �  is strong and in fact in the next theorem we showed 

that it is redundant. Consequently, the hypothesis on � being upward 

directed can be eliminated and ℓ������ ℓ���� is module amenable when � is 

amenable. We are now going to prove the main result in this paper. 
 

Theorem 5. Let � be an inverse semigroup with the set of idempotents �. 

Then the following statements are equivalent: 

�?�  ℓ���H��� ℓ���H� � ℓ���H � �H�  is module amenable.  

�??�  ℓ���H� �� ℓ���H� is amenable. 

�???�  ℓ������ ℓ���� � ℓ��� � �� is module amenable. 

 

 

Proof. �?� E �??� : Obviously, the left action ℓ���� on ℓ���H� is trivial. 

Also it is shown in Lemma of Amini (2004) that right action is also trivial, 

that is: 
 

FMHN. FG 
 FMHGN 
 FMHN   (J � �, A � ��. 
 

This shows that ℓ���H� is a commutative Banach ℓ���H�- ℓ����-module and  

ℓ���H� ��	
��� ℓ���H� �  ℓ���H��� ℓ���H�. Thus every module approximate 

diagonal for Banach algebra ℓ���H��� ℓ���H� is an approximate diagonal and 

vice versa. Therefore the result follows from Theorem 4 and Theorem 2.9.65 

of Dales (2000). 
 
�???� O �?�: In Corollary 2, put  � 
  ℓ����,  �/- 
 ℓ���H� and             

$ 
 ℓ����. 
 

�?� O �???�: Assume that � is a commutative Banach  ℓ������ ℓ����-

 ℓ����-module with  compatible actions. We consider the following module 

actions ℓ���H��� ℓ���H� on �, 

 

�FMHN � FMIN�. � 
 �FH � FI�. � 

�. �FMHN � FMIN� 
 �. �FH � FI�, 

 

for all t, s � �, � � �. Indeed, FH " FHG � - if and only if FHI " FHGI � -, for 

all @, J �  �, A � �.  



Module Amenability of the Projective Module Tensor Product 

 

 Malaysian Journal of Mathematical Sciences 263 
 

Now, for each t, s � �, � � �, and A, D � �,  we have 
 

       ��FH " FHG� � �FI " FIR��. � 
 �FH � FI�. � " �FHG � FI�. � 

                                                             "�FH � FIR�. � � �FHG � FIR�. � 

                                                             
 �FH � FI�. � " �FHG � FI�. � 

                                                             "�FH � FI�. ��. FR� � �FHG � FI�. ��. FR� 

                                                             
 �FH � FI�. � " �FHG � FI�. � 

                                                             "��FH � FI�. ��. FR � ��FHG � FI�. ��. FR 

                                                             
 �FH � FI�. � " �FHG � FI�. � 

                                                             "�FR . FH � FI�. � � �FR . FHG � FI�. � 

                                                             
 �FH � FI�. � " �FHG � FI�. � 

                                             "�FH � FI�. � � �FHG � FI�. �=0. 

 

Thus � becomes a commutative Banach  ℓ���H��� ℓ���H� -ℓ����-module 

with compatible actions. Suppose that �: ℓ������ ℓ����  � �# is a module 

derivation. Define the map  
 

�>: ℓ���H��� ℓ���H�   � �# 

 

via �>SFMHN � FMINT U ��FH � FI�, for all t, s � �, and extend by linearity.  

Since �H is a discrete group, the group algebra ℓ���H� has an identity 

V 
 W � - �W � ℓ�����. By definition of the map �>, we get 
  

��FH � FIX� 
 ��W. FH � FIX�      �@, J, Y � ��. 
 

Using the above equality we can show that  �> is well-defined. Due to 

module amenability of ℓ���H� �� ℓ���H�,  the derivation � is inner. This 

completes the proof.  

 

It is proved by Amini (2004) that if ℓ���� acts on ℓ���� by multiplication 
from right and trivially from left, then  

 

ℓ���� ��	
��� ℓ���� � ℓ��� � ��/), 

 

 

where ) is the closed ideal of ℓ��� � ��  generated by the set of elements of 

the form F�HGI,!� " F�HI,!�, where @, J, � � �, A � �.  

 



 Abasalt Bodaghi  

 

264 Malaysian Journal of Mathematical Sciences 
 

Corollary 6.   If  �  is   an    amenable   inverse   semigroup with the set of 

idempotents �,  then  ℓ���� ��	
��� ℓ���� is module amenable. 

 

Proof. The semigroup algebra ℓ���� is ℓ����-module amenable by Amini 

(2004), and so ℓ���H� is amenable by Amini et al. (2010). Thus 

ℓ���H� �� ℓ���H�  is amenable by Johnson’s theorem (the projective tensor 
product of  amenable Banach algebras is also amenable) . Now, the result 

follows from Proposition 1 and Theorem 5.  
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