Module Amenability of the Projective Module Tensor Product

Abasalt Bodaghi

Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Institute for Mathematical Research, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

E-mail: abasalt@putra.upm.edu.my

ABSTRACT

Let S be an inverse semigroup with the set of idempotents E. In the current paper, we show that the projective module tensor product $\ell^1(S) \ \widehat{\otimes}_{\ell^1(E)} \ \ell^1(S)$ is $\ell^1(E)$ -module amenable when S is amenable. This could be considered as the module version (for inverse semigroups) of a result of Johnson (1972) which asserts that for any (discrete) amenable locally compact group G (when $\ell^1(E) = \mathbb{C}$, the set of complex numbers), the projective tensor product $\ell^1(G) \ \widehat{\otimes} \ \ell^1(G) \cong \ell^1(G \times G)$ is amenable.

Keywords: Amenability, module amenability, module derivation, semigroup algebras.

INTRODUCTION

Let G be a discrete group. It is well known that the group algebra $\ell^1(G)$ is amenable if and only if G is amenable (1972). This fact fails for discrete semigroups. In fact, Duncan and Namioka (1988) proved that if the subsemigroup E of idempotent elements of inverse semigroup S is infinite, then the semigroup algebra $\ell^1(S)$ is not amenable. Amini (2004) introduced the concept of module amenability for a class of Banach algebras and showed that under some natural conditions for an inverse semigroup S with the set of idempotents E, the semigroup algebra $\ell^1(S)$ is module amenable as a Banach module on $\ell^1(E)$ if and only if S is amenable. Now, for an amenable discrete group G, it follows from the celebrated Johnson's theorem (1972) that the projective tensor product $\ell^1(G) \widehat{\otimes} \ell^1(G) \cong \ell^1(G \times G)$ is amenable. This is not true for any discrete semigroup. In this paper, we prove that if S is an amenable inverse semigroup with the set of idempotents E, then $\ell^1(S) \widehat{\otimes} \ell^1(S) \cong \ell^1(S \times S)$ is module amenable as an $\ell^1(E)$ module. As a consequence, we prove that Banach $\ell^1(E)$ -module $\ell^1(S) \widehat{\otimes}_{I^1(F)} \ell^1(S)$ is module amenable.

NOTATIONS AND PRELIMINARIES RESULTS

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -bimodule. A derivation from \mathcal{A} into X is a bounded linear map $D: \mathcal{A} \to X$ satisfying:

$$D(ab) = D(a).b + a.D(b) \quad (a, b \in \mathcal{A}).$$

For each $x \in X$ the map $ad_x(a) = a.x - x.a$ for all $a \in \mathcal{A}$, is a derivation which is called an inner derivation. If X is a Banach \mathcal{A} -bimodule, so is X^* (the dual space of X). A Banach algebra \mathcal{A} is called amenable if for any \mathcal{A} -bimodule X, every derivation $D: \mathcal{A} \to X^*$ is inner.

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions as follows:

$$\alpha.(ab) = (\alpha.a)b, (ab).\alpha = \alpha(b.\alpha), (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Let X be a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule with the following compatible actions:

$$\alpha. (a.x) = (\alpha.a).x, a. (\alpha.x) = (a.\alpha).x,$$

$$\alpha. (x.a) = (\alpha.x).a \quad (x \in X, a \in \mathcal{A}, \alpha \in \mathfrak{A}),$$

and similar for the right or two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A} -module and α . x = x. α for all $x \in X$ and $\alpha \in \mathfrak{A}$, then we say that X is a *commutative* \mathcal{A} - \mathfrak{A} -module.

Let \mathcal{A} and \mathfrak{A} be as above and X be a Banach \mathcal{A} - \mathfrak{A} -module. A bounded map $D: \mathcal{A} \longrightarrow X$ is called a *module derivation* if

$$D(a \pm b) = D(a) \pm D(b),$$

$$D(ab) = D(a).b + a.D(b),$$

$$D(\alpha.a) = \alpha.D(a), D(a.\alpha) = D(a).\alpha,$$

for all $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. If X is a commutative \mathcal{A} - \mathfrak{A} -module, then each $x \in X$ define a module derivation as follows:

$$D_{x}(a) = a.x - x.a \quad (a \in \mathcal{A}),$$

and that is called *inner derivation*. A Banach algebra \mathcal{A} is called *module amenable* (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module module X, each module derivation $D: \mathcal{A} \to X^*$ is inner; Amini (2004). Let $\mathcal{A} \ \widehat{\otimes} \ \mathcal{A}$ be the projective tensor product of \mathcal{A} and \mathcal{A} which is a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule by the following actions:

$$\alpha.(a \otimes b) = (\alpha.a) \otimes b, c.(a \otimes b) = (ca) \otimes b \quad (a, b, c \in \mathcal{A}, \alpha \in \mathfrak{A}),$$

and similar for the right actions. Then, the Rieffel's result (1978) shows that

$$\mathcal{A} \widehat{\otimes}_{\mathfrak{N}} \mathcal{A} \cong (\mathcal{A} \widehat{\otimes} \mathcal{A})/I$$

where *I* is the closed linear span of

$$\{a. \alpha \otimes b - a \otimes \alpha. b: a, b \in \mathcal{A}, \alpha \in \mathfrak{A}\}.$$

Consider $\omega \colon \mathcal{A} \ \widehat{\otimes} \ \mathcal{A} \to \mathcal{A}$ defined by $\omega(a \otimes b) = ab$ and extend by linearity and continuity. Let also J be the closed ideal of \mathcal{A} generated by $\omega(I)$. Then I and J are both \mathcal{A} -submodules and \mathfrak{A} -submodules of $\mathcal{A} \ \widehat{\otimes} \ \mathcal{A}$ and \mathcal{A} , respectively. So $\mathcal{A} \ \widehat{\otimes}_{\mathfrak{A}} \ \mathcal{A}$ and \mathcal{A}/J are both Banach \mathcal{A} -modules and \mathfrak{A} -modules. Specially, \mathcal{A}/J is always an \mathcal{A} - \mathfrak{A} -module when \mathcal{A} acts on \mathcal{A}/J canonically.

Define $\widetilde{\omega}$: $(\mathcal{A} \ \widehat{\otimes} \ \mathcal{A})/I \to \mathcal{A}/J$ by $\widetilde{\omega}(a \otimes b + I) = ab + J$ and extend by linearity and continuity. Obviously, $\widetilde{\omega}$ and its dual conjugate $\widetilde{\omega}^{**}$: $(\mathcal{A} \ \widehat{\otimes}_{\mathfrak{A}} \ \mathcal{A})^{**} \cong (\mathcal{A} \ \widehat{\otimes} \ \mathcal{A})^{**}/I^{\perp \perp} \to \mathcal{A}^{**}/J^{\perp \perp}$ are \mathcal{A} -module homomorphisms and \mathfrak{A} -module homomorphisms.

The following result is similar to a classical case for module amenable Banach algebras which has been proved by Amini (2004).

Proposition 1. If \mathcal{A} and B are Banach algebras and Banach \mathfrak{A} -modules with compatible actions, and there is a continuous Banach algebra homomorphism and module homomorphism from \mathcal{A} onto a dense subset of B, and \mathcal{A} is module amenable, then so is B.

Corollary 2. Let \mathcal{A} be Banach \mathfrak{A} -module. Then module amenability of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ implies module amenability $\mathcal{A}/J \widehat{\otimes} \mathcal{A}/J$.

Proof. The map

$$\varphi: \mathcal{A} \widehat{\otimes} \mathcal{A} \to \mathcal{A}/[\widehat{\otimes} \mathcal{A}/[$$

defined by

$$\varphi(a \otimes b) = (a+I) \otimes (b+I) \quad (a, b \in \mathcal{A}),$$

is an epimorphism and \mathfrak{A} -module homomorphism. Now, we can apply Proposition 1. \blacksquare

The following definition is given by Amini (2004).

Definition 3. A bounded net $\{\tilde{\xi}_j\}$ in $\mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A}$ is called a module approximate diagonal if $\widetilde{\omega}(\tilde{\xi}_j)$ is a bounded approximate identity of \mathcal{A}/J and

$$\lim_{j} \parallel \tilde{\xi}_{j}.\, a - a.\, \tilde{\xi}_{j} \parallel = 0 \ (a \in \mathcal{A}).$$

An element $\widetilde{M} \in (\mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A})^{**}$ is called a module virtual diagonal if

$$\widetilde{\omega}^{**}(\widetilde{M}). a = a + I^{\perp \perp}, \ \widetilde{M}. a = a. \widetilde{M} \ (a \in \mathcal{A}).$$

Note that the ideal J in this paper is defined to be the closed ideal of \mathcal{A} generated by elements of the form $(a.\alpha)b - a(\alpha.b)$, for all $a,b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, whereas Amini $et\ al.\ (2010)$, considered it as the closed ideal of \mathcal{A} generated by elements of the form $\alpha.ab - ab.\alpha$. These two ideals are the same for the inverse semigroup algebra $\ell^1(S)$ with the corresponding actions of $\ell^1(E)$, but the definition Amini $et\ al.\ (2010)$, has the advantage that J is also a Banach \mathfrak{A} -submodule of \mathcal{A} . However, Proposition 2.4 of Amini (2004), remain valid with this new definition of J when $\mathcal{A} \ \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is a commutative \mathcal{A} - \mathfrak{A} -module as follows:

Theorem 4. Let $\mathcal{A} \ \widehat{\otimes}_{\mathfrak{A}} \ \mathcal{A}$ be an commutative \mathcal{A} - \mathfrak{A} -module. Then the following are equivalent:

- (i) \mathcal{A} is module amenable and \mathcal{A}/J has a bounded approximate identity.
- (ii) A has a module approximate diagonal.
- (iii) A has a module virtual diagonal.

TENSOR PRODUCT OF SEMIGROUP ALGEBRAS

In this section, we investigate the module amenability of $\ell^1(S) \ \widehat{\otimes}_{l^1(E)} \ \ell^1(S)$ as $\ell^1(E)$ -module, where S is an inverse semigroup with the set of idempotents E. A discrete semigroup S is called an inverse semigroup if for each $s \in S$ there is a unique element s^* such that $ss^*s = s$ and $s^*ss^* = s^*$. An element $e \in S$ is called an idempotent if $e^2 = e^* = e$. The set of idempotents of S is denoted by E.

There is a natural order on *E* defined by:

$$e \le f \iff ef = e \quad (e, f \in E).$$

The set E is a semilattice and Howie (1976) showed that it is also a commutative subsemigroup of S. In particular $\ell^1(E)$ could be regarded as a subalgebra of $\ell^1(S)$, and thereby $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$ -module when $\ell^1(E)$ act on $\ell^1(S)$ by convolution from right and trivially from left, that is:

$$\delta_e.\delta_s = \delta_s$$
, $\delta_s.\delta_e = \delta_s * \delta_e = \delta_{se}$ ($s \in S, e \in E$).

By the above actions, the ideal J is the closed linear span of

$$\{\delta_{set} - \delta_{st} : s, t \in S, e \in E\}.$$

We consider an equivalence relation on S as follows:

$$s \approx t \iff \delta_s - \delta_t \in I \quad (s, t \in S).$$

Since E is a semilattice, for given $e, f \in E$, $ef \in E$ and $ef \leq e, f$. By using the argument in the paragraph before Theorem 2.4 of Amini et al. (2010), we can show that S/\approx is a group. One should note that when S is a discrete group, then $S = S/\approx$. Now, consider the congruence relation \sim on S where, $s \sim t$ if and only if there is an $e \in E$ such that se = te. It is proved by Howie (1976) that the quotient semigroup $G_S := S/\sim$ is then a maximal group homomorphic image of S. It is also proved that S/\approx is isomorphic to G_S by Pourmahmood (2010). For two Banach algebras $\ell^1(S)$ and $\ell^1(G_S)$, Rezavand et al. (2009), showed that $\ell^1(S)/J \cong \ell^1(G_S)$. With the above observation $\ell^1(G_S)$ has an $\ell^1(E)$ -module structure.

Henceforth, for each $s \in S$, the equivalence class of s in $G_s = S/\approx$ denotes by [s]. Bodaghi (2010) has proven that if S is amenable and E is an upward direct set, then $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module amenable. The upward directed condition for E is strong and in fact in the next theorem we showed that it is redundant. Consequently, the hypothesis on E being upward directed can be eliminated and $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module amenable when S is amenable. We are now going to prove the main result in this paper.

Theorem 5. Let S be an inverse semigroup with the set of idempotents E. Then the following statements are equivalent:

- (i) $\ell^1(G_s)\widehat{\otimes}\ell^1(G_s)\cong \ell^1(G_s\times G_s)$ is module amenable.
- (ii) $\ell^1(G_s) \widehat{\otimes} \ell^1(G_s)$ is amenable.
- (iii) $\ell^1(S) \widehat{\otimes} \ell^1(S) \cong \ell^1(S \times S)$ is module amenable.

Proof. (i) \Leftrightarrow (ii) : Obviously, the left action $\ell^1(E)$ on $\ell^1(G_s)$ is trivial. Also it is shown in Lemma of Amini (2004) that right action is also trivial, that is:

$$\delta_{[s]}.\delta_e = \delta_{[se]} = \delta_{[s]} \quad (t \in S, e \in E).$$

This shows that $\ell^1(G_s)$ is a commutative Banach $\ell^1(G_s)$ - $\ell^1(E)$ -module and $\ell^1(G_s) \widehat{\otimes}_{\ell^1(E)} \ell^1(G_s) \cong \ell^1(G_s) \widehat{\otimes} \ell^1(G_s)$. Thus every module approximate diagonal for Banach algebra $\ell^1(G_s) \widehat{\otimes} \ell^1(G_s)$ is an approximate diagonal and vice versa. Therefore the result follows from Theorem 4 and Theorem 2.9.65 of Dales (2000).

 $(iii) \Rightarrow (i)$: In Corollary 2, put $\mathcal{A} = \ell^1(S)$, $\mathcal{A}/J = \ell^1(G_S)$ and $\mathfrak{A} = \ell^1(E)$.

 $(i) \Rightarrow (iii)$: Assume that X is a commutative Banach $\ell^1(S) \widehat{\otimes} \ell^1(S) - \ell^1(E)$ -module with compatible actions. We consider the following module actions $\ell^1(G_S) \widehat{\otimes} \ell^1(G_S)$ on X,

$$(\delta_{[s]} \otimes \delta_{[t]}).x = (\delta_s \otimes \delta_t).x$$

$$x.(\delta_{[s]} \otimes \delta_{[t]}) = x.(\delta_s \otimes \delta_t),$$

for all $t, s \in S, x \in X$. Indeed, $\delta_s - \delta_{se} \in J$ if and only if $\delta_{st} - \delta_{set} \in J$, for all $s, t \in S, e \in E$.

Now, for each t, $s \in S$, $x \in X$, and $e, f \in E$, we have

$$\begin{split} ((\delta_s - \delta_{se}) \otimes (\delta_t - \delta_{tf})).x &= (\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - (\delta_s \otimes \delta_{tf}).x + (\delta_{se} \otimes \delta_{tf}).x \\ &= (\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - (\delta_s \otimes \delta_t).(x.\delta_f) + (\delta_{se} \otimes \delta_t).(x.\delta_f) \\ &= (\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - ((\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - ((\delta_s \otimes \delta_t).x).\delta_f + ((\delta_{se} \otimes \delta_t).x).\delta_f \\ &= (\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - (\delta_f.\delta_s \otimes \delta_t).x + (\delta_f.\delta_{se} \otimes \delta_t).x \\ &= (\delta_s \otimes \delta_t).x - (\delta_{se} \otimes \delta_t).x \\ - (\delta_s \otimes \delta_t).x + (\delta_{se} \otimes \delta_t).x = 0. \end{split}$$

Thus X becomes a commutative Banach $\ell^1(G_S)\widehat{\otimes}\ell^1(G_S) - \ell^1(E)$ -module with compatible actions. Suppose that $D: \ell^1(S)\widehat{\otimes}\ell^1(S) \longrightarrow X^*$ is a module derivation. Define the map

$$\widetilde{D}$$
: $\ell^1(G_s) \widehat{\otimes} \ell^1(G_s) \longrightarrow X^*$

via $\widetilde{D}(\delta_{[s]} \otimes \delta_{[t]}) := D(\delta_s \otimes \delta_t)$, for all $t, s \in S$, and extend by linearity. Since G_s is a discrete group, the group algebra $\ell^1(G_s)$ has an identity $\mathcal{E} = \mathfrak{e} + I$ ($\mathfrak{e} \in \ell^1(S)$). By definition of the map \widetilde{D} , we get

$$D(\delta_s \otimes \delta_{tu}) = D(e, \delta_s \otimes \delta_{tu}) \quad (s, t, u \in S).$$

Using the above equality we can show that \widetilde{D} is well-defined. Due to module amenability of $\ell^1(G_S) \widehat{\otimes} \ell^1(G_S)$, the derivation D is inner. This completes the proof.

It is proved by Amini (2004) that if $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication from right and trivially from left, then

$$\ell^1(S) \widehat{\otimes}_{l^1(E)} \ell^1(S) \cong \ell^1(S \times S)/I,$$

where *I* is the closed ideal of $\ell^1(S \times S)$ generated by the set of elements of the form $\delta_{(set,x)} - \delta_{(st,x)}$, where $s,t,x \in S,e \in E$.

Corollary 6. If S is an amenable inverse semigroup with the set of idempotents E, then $\ell^1(S) \widehat{\otimes}_{l^1(E)} \ell^1(S)$ is module amenable.

Proof. The semigroup algebra $\ell^1(S)$ is $\ell^1(E)$ -module amenable by Amini (2004), and so $\ell^1(G_S)$ is amenable by Amini *et al.* (2010). Thus $\ell^1(G_S) \otimes \ell^1(G_S)$ is amenable by Johnson's theorem (the projective tensor product of amenable Banach algebras is also amenable). Now, the result follows from Proposition 1 and Theorem 5.

ACKNOWLEDGEMENT

This paper was prepared while the author was attending as Post Doctoral Researcher in Universiti Putra Malaysia. I would like to thank the staff and faculty of the Institute for Mathematical Research for their cooperation and hospitality.

REFERENCES

- Amini, M. 2004. Module amenability for semigroup algebras. *Semigroup Forum.* **69**: 243-254.
- Amini, M. Bodaghi, A. and Ebrahimi Bagha, D. 2010. Module amenability of the second dual and module topological center of semigroup algebras. *Semigroup Forum.* **80**: 302-312.
- Bodaghi, A. 2010. Module amenability and tensor product of semigroup algebras. *Journal of Mathematical Extension*. **4**(2): 97-106.
- Dales, H. G. 2000. *Banach Algebras and Automatic Continuity*. Oxford: Oxford University Press.
- Duncan, J. and Namioka, I. 1988. Amenability of inverse semigroups and their semigroup algebras. *Proc. Roy. Soc. Edinburgh.* **80A**: 309-321.
- Howie, J. M. 1976. An Introduction to Semigroup Theory. London: Academic Press.

- Johnson, B. E. 1972. Cohomology in Banach Algebras. *Memoirs Amer. Math. Soc.* **127**.
- Pourmahmood-Aghababa, H. 2010. A note on two equivalence relations on inverse semigroups, *unpublished manuscript*.
- Rezavand, R. Amini, M. Sattari, M. H. and Ebrahimi Bagha, D. 2008. Module Arens regularity for semigroup algebras. *Semigroup Forum*. 77: 300-305.
- Rieffel, M. A. 1976. Induced Banach representations of Banach algebras and locally compact groups. *J. Funct. Anal.* 1: 443-491